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< An LTI model, in the form of a state space model, is proposed for solid-phase diffusion in physics-based lithium ion cell models.
< The proposed model can be used for spherical and non-spherical particles.
< Impact of different particle shapes on electrochemical performances can be investigated.
< The model is much faster than solving the full model.
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a b s t r a c t

Physics-based lithium ion models are widely used to predict the electrochemical behavior of lithium ion
cells. The implementation of such a model typically requires solving a diffusion problem in solid parti-
cles. A linear time-invariant (LTI) model is proposed for the solid-phase diffusion problem. This LTI model
can be used for spherical and non-spherical particles. For spherical particles, results from using the LTI
model are compared with those from solving full diffusion equation, and excellent agreement is ach-
ieved. The LTI model solves only a few equations, and thus it runs much faster than the model solving the
full diffusion equation. Impact of particle shapes on the electrochemical behavior is investigated after the
model is validated.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The lithium ion battery is a preferred candidate as a power
source for hybrid electric vehicle (HEV) and electric vehicle (EV)
due to its outstanding characteristics such as high energy
density, high voltage, low self-discharge rate, and good stability
among others. Physics-based lithium ion models are widely used
to predict the electrochemical behavior of lithium ion cells [1e3].
The implementation of such a model typically requires solving
a diffusion problem in solid particles, which are used to model
the porous electrodes. Due to the large number of particles
involved, the particle shapes are assumed to be spherical so that
the diffusion equation becomes one dimensional. However, it is
still computationally expensive to solve a large number of
1d diffusion equations. For particles of arbitrary shapes or
: þ1 734 213 0147.

All rights reserved.
more general porous structures, three dimensional diffusion
equations are required to characterize the diffusion process
in such structures. A physics-based model, which involves
solving 3d diffusion equations, becomes prohibitively expensive
computationally.

For spherical particles, several methods have been proposed to
reduce the size of the problem. They belong to either the global
approach or the local approach. In the global approach, the entire
model is reduced. Such a global approach is used in [4] through
proper orthogonal decomposition (POD). In such an approach, the
space of the solution is estimated by testing system responses
from typical boundary conditions to a full model. A set of basis are
then formed for the solution space in such a way that the leading
coordinates have much larger magnitude and thus the rest of the
coordinates can be truncated. The reduced model is then formu-
lated based on the new truncated basis. Because the physics-based
model is highly non-linear, when actual boundary conditions
differ from the typical boundary conditions used to identify the
reduced model the error could be large. This approach cannot be
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extended to non-spherical particles easily since a full model is
needed in the first place before a reduced model could be gener-
ated. Another global approach is proposed in [5]. In this approach,
a full model is linearized and transfer functions are created for the
linearized model. Errors could be large in using such an approach
if perturbation is large since linearization assumes small pertur-
bation. The method also relies on spherical particles for an
analytical transfer function and thus cannot be extended to non-
spherical particles.

Another popular approach is the local approach, in which only
the linear diffusion equation is reduced and the non-linear part of
the model is intact. Different local methods differ in how to obtain
approximate solutions to the diffusion problem for a spherical
particle. Approximation can be performed either in the time-
domain or in the frequency-domain. One time-domain approach
is to take advantage of superposition [1,2]. Another time-domain
approach makes the assumption that the concentration within
each spherical particle can be approximated with a parabolic
profile [6,7]. A relatively recent time-domain approach is to obtain
an approximate solution by truncating the analytical solution of an
infinite series and then adding an estimate term for the truncation
error [8]. In all of the time-domain local methods mentioned,
spherical particles are assumed. In frequency-domain local
approximation methods, a state space model is created to
approximate the transfer function of the system. In Ref. [9], high-
order poles of the transfer function are truncated and the lower-
order poles are grouped together and approximated using a state
space model. In Ref. [10], a discrete-time state space model is
derived from a known transfer function. In Refs. [9,10], analytical
transfer functions are assumed to be known, and thus both
methods are limited to spherical particles.

In this paper, an LTI model, a frequency-domain local approach,
is proposed to accurately model the diffusion process for spherical
and non-spherical particles. This method shares similarity with [9]
and [10] in that it also seeks a state space model that approximates
the transfer function of the system. However, the current method
does not assume a known transfer function. The transfer function is
calculated numerically and thus it can be applied to non-spherical
particles. The way to identify the state space model is also different.
The method used in Ref. [9] does not give the same accuracy as the
LTI method in this paper. Compared with Ref. [10], the current
approach obtains the continuous-time state space model directly
rather than having to obtain the discrete-time state space model
first. The LTI method has been widely used to model devices and
subsystems for the purpose of transient analysis in power systems
[11,12], signal integrity characterization of microwave systems
[13,14], and battery thermal systems [15,16]. In applying the LTI
method, one essentially obtains the transfer function of the system
numerically (or by testing in some cases) and then a state space
model is identified to have the same transfer function using the
vector fitting method [17]. Afterward, the state space model can be
used to simulate the system in the time-domain. The LTI approach
can give highly accurate results and yet the size of the model can be
very small if the state space model is properly identified. Note that
the LTI approach also relies on linearity, but it does not require the
existence of an analytical solution since the transfer function of the
system is obtained numerically (or by testing). For the current
application, this implies that the method can be used for particles
of any shape.

The paper is organized as follows. Section 2 describes the LTI
approach for the solid-phase diffusion problem in particles. Section
3 integrates the LTI model into the physics-based model using
spherical particles and validates its results against a full model
solving particle diffusion equations directly. In Section 4, non-
spherical particles are used and the impact of different shapes of
particles on the electrochemical behavior is investigated. Finally,
Section 5 is the conclusion.

2. LTI modeling for particle solid-phase diffusion

In using the LTI approach, the problem is treated like a system. A
system is an entity that processes a set of input signals (or simply
called inputs) and yields another set of output signals (or simply
called outputs). In such a system view, only the input/output rela-
tionship of the system is of interest to the user and the inner
structure of the system is not. In the solid-phase diffusion problem,
the molar flux at the particle surface as a function of time is used as
the input and the surface-averaged concentration increase at the
particle surface as a function of time is used as the output. We are
interested in the relationship between the surface molar flux and
averaged surface concentration increase. Concentration distribu-
tion inside a particle is not of great interest. Solid-phase diffusion
problem so described is a system. More importantly, it is not only
a system, but it is also an LTI system. Any state space model is also
an LTI system. One important feature about LTI systems is that if
two LTI systems have the same impulse or step response, the two
systems behave identically in that the outputs of the two systems
are the same provided that the inputs to the two systems are the
same. This feature allows us to use the state space model to
simulate the solid-phase diffusion problem provided that its step
response is curve-fitted to that of the solid-phase diffusion
problem. Note that if two LTI systems have the same impulse or
step response, they have the same transfer function. So, when
matching the step response of two LTI systems, effectively we are
matching the transfer function of the two LTI systems. Since the size
of the state space model is small, it runs very fast compared with
the full model which solves the complete diffusion equation
directly using numerical methods.

The diffusion of lithium ions in a solid-phase particle follows the
Fick’s law and is described by the following partial differential
equations:

vc
vt

¼ DV2c (1)

cð x.;0Þ ¼ c0 (2)
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.
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U

¼ jðtÞ (3)

where c is the concentration of lithium in the solid particle; c0
is the initial concentration of lithium in the solid particle, assumed
to be a constant; D is the solid-phase diffusion coefficient for
lithium in the particle, assumed to be constant; j(t) is the
boundary molar flux, assumed to be a function of time only for
each particle; and U denotes the boundary of the particle, which is
assumed to fixed. We are interested in the relationship between
j(t) and averaged surface concentration increase of the system.
Since the diffusion equation and the boundary condition are linear
and diffusivity is a constant, the system so described is an LTI
system.

A general state space model is typically written as follows:

_x ¼ Axþ Bu
y ¼ Cxþ Du

(4)

x is the state vector; y is the output vector; u is the input vector; A, B,
C, D are constant coefficient matrices of proper sizes. Since Eqn. (4)
is linear with constant coefficients, the system is an LTI system. For
the state space model used to simulate the solid-phase diffusion
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problem, x has no physical meaning; y is a scalar representing
averaged surface concentration increase; u is a scalar representing
the transient flux j(t). A critical step in LTI modeling is to identify
matrices A, B, C, D such that the state space model gives the same
step response as the original diffusion problem governed by Eqn.
(1)e(3). Once that is accomplished, characteristics of LTI systems
guarantee that the state space model can be used to replace Eqn.
(1)e(3) to model the relationship between the surface molar flux
and averaged surface concentration increase with excellent
accuracy.

To demonstrate the LTI approach, state space models are con-
structed for three different solid-phase structures, a spherical
particle, an elliptical particle, and a more general porous structure.
In the first example, a spherical particle is used. The first step in LTI
model identification is to obtain the step response of the system
modeled. In order to obtain the step response of the particle
diffusion problem, the diffusion problem is solved numerically
using FLUENT, a CFD code from ANSYS. The concentration distri-
bution at the end of the step response simulation is shown in Fig. 1
along with the geometry and mesh used in the CFD model. Note
that any CFD code can be used to solve the particle diffusion
problem by using analogy between thermal diffusion and species
diffusion.

After the diffusion problem is solved for its step response, a state
space model of Eqn. (4) is identified by curve-fitting its step
Fig. 1. Geometry and mesh for a spherical particle and its con
response to that of the CFDmodel. The curve-fitting was performed
in the frequency-domain using the vector fitting (VF) method [17].
A brief introduction of the VF method applied to the diffusion
problem is provided in Appendix A. The curve-fitting results are
shown in Fig. 2. It can be seen that the state space model gives the
same step response as the CFD model solving Eqn. (1)e(3). The
excellent accuracy in Fig. 2 indicates that the curve-fitting by the VF
method is very accurate for this diffusion problem. The state space
model has an order of 7, and so only 7 ordinary differential equa-
tions are solved in the state space model. Higher order state space
models can be used for greater accuracy. But from Fig. 2, it shows
that an order of 7 is sufficient, and validation in Section 3 also
indicates that 7th order is accurate enough when such a model is
integrated into physics-based lithium-ion cell models. After the
state space model is identified, it can be used to simulate the
diffusion problem under any transient flux boundary rather than
just step flux boundary.

For a spherical particle, its step response can be obtained
analytically [8]. So, the state space model could also be identified
using the analytical solution. Such fitting results and its corre-
sponding state space model are provided in Appendix B for
reference.

Note that the model generation process of the LTI approach does
not depend on the shape of the particles. In the second example, an
elliptical particle is used. The model generation process is the same
centration distribution at the end of a step response run.



Fig. 2. Step responses from the CFD model and the LTI model for the spherical particle. Fig. 4. Step responses from the CFD model and the LTI model for the elliptical particle.
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as before. The concentration distribution at the end of the step
response simulation along with the geometry andmesh used in the
CFD model is shown in Fig. 3. Step responses from the CFD model
and the LTI model are compared in Fig. 4. The excellent agreement
Fig. 3. Geometry and mesh for an elliptical particle and its con
shown in Fig. 4 indicates that curve-fitting performed by the VF
method is excellent. This also implies that subsequent simulation
by the LTI model under any transient flux j(t) will give excellent
accuracy.
centration distribution at the end of a step response run.
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The above elliptical example showed that the model generation
process of the LTI approach is quite general. As a matter of fact, the
porous structure of electrodes does not even have to be modeled
using particles. Instead, any porous structure shape could be used
without simplification. In this third example, a porous structure is
used, which consists of spherical particles packed together with
overlapping. For simplicity, this porous structure will be referred to
as a porous particle in the rest of the paper. For this porous particle,
the LTI model identification process is the same as before. The
concentration distribution at the end of the step response simula-
tion along with the geometry and mesh used in the CFD model is
shown in Fig. 5. Step responses from the CFD model and the LTI
Fig. 5. Geometry and mesh for a porous particle and its concentration distribution at the en
(For interpretation of the references to color in this figure legend, the reader is referred to
model are compared in Fig. 6. Since concentration changes rapidly
close to timeof zero, a plot using log time scale is also shown in Fig. 6.
Both plots in Fig. 6 showed excellent accuracy. High accuracy near
time of zero is important for accurate prediction of transient
behavior of a battery cell as shown shortly. Log time scale plots for
the spherical and elliptical particles are also excellent. For simplicity,
only the log time scale plot for the porous particle is shown.

The claim, that an LTI model could be used to simulate the
diffusion problem under any transient flux of j(t) provided that its
step response matches well with that of the CFD model, is verified
next. To do that, a rather arbitrary flux of j(t) shown in Fig. 7 is used
as the input to the CFD model and the corresponding LTI model for
d of a step response run. The green patch on the mesh denotes the overlapping region.
the web version of this article.)



Fig. 6. Step responses from the CFD model and the LTI model for the porous particle. a)
Regular scale on time. b) Log scale on time.

Fig. 8. Surface concentration from the CFD model and the LTI model under j(t) shown
in Fig. 7 for the porous particle.

X. Hu et al. / Journal of Power Sources 214 (2012) 40e50 45
the porous particle. And their surface concentration results are then
compared in Fig. 8. It is clear from Fig. 8 that the state space model
gives excellent results under such an arbitrary transient flux of j(t).
Therefore, the claim is verified.

If a spherical particle and an elliptical particle are created to
have the same volume, the difference in surface area would cause
different surface concentration behavior. The elliptical particle has
more surface area and therefore under the same surface flux its
surface concentration increases more quickly. On the other hand, if
the same total flux, namely the surface integration of j(t), is applied
Fig. 7. An arbitrary boundary flux function j(t) for testing.
to the two particles, the elliptical particle experiences smaller flux
and thus its surface concentration increases less rapidly. The second
scenario can be used to discuss the impact of different particle
shapes on battery performance. The same argument above also
applies to particles of different volumes and porous particles after
proper scaling. The porous particle used in this paper, which is
generated using spherical particles of the same size but with
overlapping, has the opposite effect compared with the elliptical
particle. This is because the porous particle has less surface area
compared with the spherical particle per unit volume. Fig. 9 shows
surface concentration of the three different particles under the
same total flux, and the different behavior is what was just dis-
cussed. Larger surface area from the elliptical particle would make
such a particle less prone to saturation and depletion. On the other
hand, smaller surface area from the porous particle would make
such a particle more prone to saturation and depletion. Impact of
different particle shapes on battery performance is discussed in
details in Section 4.
3. LTI model validation

In Section 2, LTI models are created and validated in isolated
environments. In this section, the LTI model is validated when
Fig. 9. Step responses of all three particles under the same total flux.



Fig. 10. Cell potential vs. capacity at different discharge rates using the full model
(denoted by solid lines) and the reduced model (denoted by dotted lines).

Fig. 12. Surface molar flux j(t) obtained from the full model (denoted by solid lines)
and those from the reduced model (denoted by dotted lines) at 1 C discharge rate for
a few selected particles.
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integrated into the physics-based lithium ion cell model. Such
a model will be referred to as the reduced model. For comparison,
a model solving the complete solid-phase diffusion equation
directly is created. This model will be referred to as the full model.
Spherical particles are used since the full model can only allow for
spherical particles. Properties and dimensions of the two models
are otherwise identical and they are all from Ref. [4]. Both models
are created using the VHDL-AMS modeling language and solved in
Simplorer, a system simulator from ANSYS. Generation of physics-
based lithium ion cell models using VHDL-AMS modeling
language is discussed in detail in Ref. [18].

Fig.10 showed the cell discharge curves using the full model and
the reduced model. It can be seen from Fig. 10 that excellent results
are obtained by using the reduced model even at a discharge rate of
10 C. For 10 C, the full model needs 200 equations for each particle
to obtain accurate results when spatial discretization is uniform,
and for the rest of the discharge curves,100 equations per particle is
used to obtain adequate accuracy using uniform spatial dis-
cretization. Fig. 11 showed the comparison of concentration at four
specified interfaces. Again, excellent results are achieved by using
the reduced model. Fig. 12 compares the flux j(t) at four particle
Fig. 11. Concentrations of lithium ion in the liquid phase at the four specified inter-
faces obtained from the full model (denoted by solid lines) and those from the reduced
model (denoted by dotted lines) at 1 C discharge rate.
surfaces, and Fig. 13 compares the surface concentration at the
same four particles. Excellent results are achieved by using the
reduced model in both Figs. 12 and 13. Note that at the start of the
discharging surface concentration and flux change rapidly because
of sudden change of current from 0 to 1 C at time of zero. And the
reduced model can capture all the transient behavior at the particle
surface. In Fig. 14, a charge discharge cycle is simulated for
comparison. Again, we observe excellent results from the reduced
model.

All of the comparisons performed above show that the reduced
model can accurately model the cell behavior and thus can be used
to replace the full model. While the full model solves for 100
equations for each particle (except for 200 being used for 10 C
discharge), the reduced model solves only 7 equations per particle.
Because of that, the reduced model runs much faster. For the cell-
cycling simulation shown in Fig. 14, the run-time for the full
model is about seven times more than the reduced model.

Note that the reduced model cannot be used to calculate the
concentration distribution inside the particles. If such information
is valuable, one could use the LTI model for most of the particles
except for a few selected ones. For those a few selected particles,
full particle diffusion equations are solved and thus concentration
distribution is available for those a few particles. This technique
does not apply to non-spherical particles though because it is too
Fig. 13. Surface concentrations obtained from the full model (denoted by solid lines)
and those from the reduced model (denoted by dotted lines) at 1 C discharge rate for
a few selected particles.



Fig. 14. Cell-cycling simulation results based on the full model (denoted by solid lines)
compared to results of the reduced model (denoted by dotted lines). Cell-cycling
protocol: 1 C discharge to 3.6 V, followed by 1 C charge to 4.1 V, and then charge
the cell holding the cell potential at 4.1 V until the current decreases to 0.5 A.
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computationally expensive and too tedious to solve for full 3d
diffusion equations even just for one single non-spherical particle
in the physics-based cell model. For such non-spherical particles,
the LTI approach could provide some additional information
without too much additional computational cost. In the LTI models
generated so far, we are only interested in averaged surface
concentration. We could have, though, added additional outputs
when creating the LTI model. For instance, we could have used
concentration at a few user specified locations inside the particle as
outputs. This would make the LTI model have multiple outputs
rather than just one output. With such an LTI model integrated into
the physics-based model, concentration at those selected locations
can be calculated. One of the nice features about VF is that adding
additional outputs does not increase the size of the model linearly.
The VF method actually obtained its name because of this feature.
4. Impact of particle shapes on cell performance

In order to investigate the impact of particle shapes on the cell
behavior, three models are created, which use spherical particles,
elliptical particles, and porous particles, respectively. The proper-
ties of these particles are listed in Table 1. The spherical particles
have the sizes from Ref. [4]. And the corresponding elliptical
particles have the same volume. The porous particles use the same
spherical particles with overlapping. For general porous structures,
a volume for a porous “particle” is not defined. So, the volume is
Table 1 for the porous particle is scaled to be per volume sense, and
its surface area is also scaled to reflect that. The increased or
Table 1
Particle properties. Values for the porous particle are scaled to have the same
volume.

Volume
(m3)

Surface area
(m2)

as
(m2 m�3)

Sphere, negative 8.1816e�15 1.96352e�9 as,n
Sphere, positive 2.14464e�15 8.0424e�10 as,p
Ellipse, negative 8.1816e�15 2.10352e�9 1.0713x as,n
Ellipse, positive 2.14464e�15 8.5784e�10 1.0666x as,p
Porous, negative 8.1816e�15 1.73694e�9 0.8846x as,n
Porous, positive 2.14464e�15 7.1143e�10 0.8846x as,p
decreased specific interfacial area reflects the increased or
decreased surface area due to different particle shapes. Apart from
the shapes and the specific interfacial area, the rest of the three
models are identical. So, any difference in the cell performance is
due to the difference in particle shapes. All three models use the LTI
approach for the solid diffusion problem.

In Figs 15 and 16, discharge curves are compared for a few
different discharge rates. Fig. 15 shows that there is minimum
difference using these different particles when the discharge rates
are low (<1 C rate). Fig. 16 shows that the cell using the elliptical
particles delivers more capacity at these higher discharge rates.
This is because the surface area of the elliptical particle is larger and
thus concentration gradient inside the elliptical particle is smaller
as discussed in Section 2, making it less prone to saturation or
depletion. On the other hand, the cell using the porous particle has
opposite effect on capacity due to its less surface area. Note that the
porous particle here uses the same spherical particles only with
overlapping, so the results showed the negative impact of over-
lapping on cell performances.
5. Conclusion

An LTI model is proposed for the solid-phase diffusion problem
in particles used by physics-based lithium-ion cell models. The
proposed model has the following advantages compared with
commonly used methods:

1. It can be used for non-spherical particles or even porous
structures. Loss of accuracy is minimum because the LTI model
can give very similar results as one would obtain by solving
a 3d diffusion equation.

2. The size of the LTI model is very small. For the test cases
simulated, the LTI model needs to solve only 7 equations for
each particle, while the full model may need up to 200 equa-
tions for each particle if spatial discretization is uniform. So,
even for spherical particles, the proposed method can reduce
the total size of the problem significantly. Thus, the reduced
model runs much faster, a factor of seven observed for the cell-
cycling simulation.

The proposed LTI method greatly extends the capability of the
physics-based models by allowing for non-spherical particles. And
the method also significantly increases the efficiency of such
models. Lastly, all are achieved with negligible loss of accuracy.
Fig. 15. Cell potential vs. time at different low discharge rates of 0.5 C and 1 C using the
three different particle shapes. No apparent differences due to different shapes show
up at these low discharge rates.



Fig. A1. Impulse response for the spherical particle for the negative electrode.

Fig. 16. Cell potential vs. time at different high discharge rates of 3 C and 5 C using
three different particle shapes.
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List of symbols

as Specific interfacial area, m�1

as,n Specific interfacial area for negative electrode, m�1

as,p Specific interfacial area for positive electrode, m�1

c concentration, mol m�3

cs surface concentration, mol m�3

D diffusivity of lithium in the solid particles, m2 s�1

j wall flux of lithium ions, mol m�2 s�1

Ln thickness of negative electrode, m
Lp thickness of positive electrode, m
Ls thickness of separator, m
R radius of a spherical particle, m
t time, s
s dimensionless time

Appendix A. LTI model identification process for the diffusion
problem using vector fitting

In using the VF method for state space model identification,
instead of fitting the step response of the state space model to that
of the CFD model directly, the transfer function of the state space
model is identified with the Fourier transform of the impulse
response of the system, which is calculated from the step response.
The transfer function of the state space model in Eqn (4) can be
shown to be:

f ðsÞ ¼
XN

i¼1

ci
s� ai

(A.1)

Transfer function is also the Laplace transform of the impulse
response of the system. For stable systems, s ¼ ju is in the region of
convergence of the Laplace transform and thus f(ju) becomes the
Fourier transform of the impulse response of the state space model.
One could then curve-fit f(ju) with the sampled Fourier transform
of the impulse response, calculated from the step response, to
obtain the poles and residuals of Eqn. (A.1). Such a fitting process
can be viewed as using rational basis functions 1/(s � ai) for curve-
fitting. If ai were known, this would become a linear least-squares
problem to determine ci. Since ai are not known, an iterative
scheme is needed to update ai at each iteration. Once the poles and
residuals are obtained, it is a simple matter to obtain the corre-
sponding state space model of Eqn (4). The sampled Fourier
transform can be obtained by sampling the impulse response of the
diffusion problem followed by FFT. Such a fitting approach in the
frequency-domain is generally referred to as rational fitting. VF is
a robust algorithm of rational fitting [17]. The steps to identify the
state space model using VF are summarized as follows:

Step 1 Obtain the step response of the diffusion problem from
a CFD model.

Step 2 Calculate the impulse response. The time derivative of the
step response is the impulse response.

Step 3 Sample the impulse response curve.
Step 4 Perform FFT of the sampled impulse response.
Step 5 Take the low frequency portion of the FFT and perform

proper scaling in both coordinates. This gives the sampled
Fourier transform of the impulse response.

Step 6 Perform vector fitting to obtain the poles and residuals of
the transfer function of the state space model.

Step 7 Construct the state space model from the known transfer
function.

Step 8 Solve the state space model in time-domain.

Some variations of the procedure exist. First of all, one could start
with the impulse response if available. For the diffusion problem, it
is easier for a CFD solver to calculate the step response than the
impulse response. Secondly, if the solver has the frequency sweep
capability, the sampled Fourier transform can be obtained directly
and this could then be the starting point. The above procedure
assumes that the Fourier transform of the impulse response exists.
For the solid-phase diffusion problem, the impulse response has no
Fourier transfer. This is because the surface concentration
approaches to a positive steady state value as time goes to infinity
under an impulseflux boundary condition. Such a behavior is simply
a consequence of mass conservation. In order to apply the above
procedure, a small modification is necessary, which is to apply the
above procedure after the steady state value is subtracted from its
impulse response. And then an integrator is added in the final
transfer function to account for the steady state value. Fig. A1 shows
the numerically calculated impulse response (not a unit impulse
response) for the particle used in the negative electrode. The cor-
responding step response has a step input of 1e�6 mol m�2 s�1 into
the sphere rather than a unit step input. Since the system is linear,
a proper scaling will give the unit impulse response. Fig. A2 shows
the numerically calculated frequency response by performing FFTof
the impulse response followed by proper scaling. Only first 1200
points from FFT is used for fitting and displayed in Fig. A2. Experi-
ence suggests that accurate results in time-domain can be obtained
when a cut-off frequency is chosen such that the magnitude of the
frequency response drops by 1.5e2 orders of magnitude.



Fig. A2. Numerically calculated frequency response from FFT of the impulse response.

a

b
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Fig. B1. Step responses in non-dimensional form from the analytical solution and the
LTI model for a spherical particle. a) Regular scale on s. b) Log scale on s.
Appendix B. Vector fitting results for spherical particles using
analytical solution

For spherical particles, the LTI model could be identified using
analytical step response solution rather than CFD solution. Such an
analytical solution in non-dimensional form is shown in Ref. [8] to
be an infinite series,

csðsÞ ¼ 3sþ
XN

n¼1

QnðsÞ (B.1)

where

QnðsÞ ¼ 2

l2n

h
1� exp

�
�l2ns

�i
(B.2)

ln � tanðlnÞ ¼ 0 n ¼ 1;2;. (B.3)

s ¼ D
R2

t (B.4)

The first 500 terms of the series is used here to represent the
analytical solution. Fig. B1 below shows the step responses from the
analytical solution and the LTI model. It can be seen that very
accurate results are obtained using the LTI model. Below is the state
space model from the VF method used to generate the two plots in
Fig. B1. Such a state space model can be integrated into the physics-
based cell model for the diffusion problem using spherical particles
after scaling back to dimensional form. Note that matrix A in the
state space model takes diagonal form, which makes the 7
equations in the state space model decoupled. Such a simple form
makes the already small model very efficient to solve.

Initial conditions: x0 ¼ 0.0; x1 ¼ 0.0; x2 ¼ 0.0; x3 ¼ 0.0; x4 ¼ 0.0;
x5 ¼ 0.0; x6 ¼ 0.0;

c_surf ¼ 366.4550 * x0 þ 38.89143 * x1 þ 16.43058
* x2 þ 7.834168 * x3 þ 3.825026 * x4 þ 2.198156 * x5 þ 3.0 * x6;

dx0/dt ¼ �6.084373e þ 004 * x0 þ flux_j;
dx1/dt ¼ �5.807664e þ 003 * x1 þ flux_j;
dx2/dt ¼ �1.307607e þ 003 * x2 þ flux_j;
dx3/dt ¼ �3.227365e þ 002 * x3 þ flux_j;
dx4/dt ¼ �8.353250e þ 001 * x4 þ flux_j;
dx5/dt ¼ �2.089056e þ 001 *x5 þ flux_j;
dx6/dt ¼ flux_j;
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